
#240

Scalable bifurcation analysis algorithms for large parallel
applications

Andrew G. Salinger a,Ł, Roger P. Pawlowski a, Louis A. Romero b

a Parallel Computational Sciences Department, Sandia National Laboratories, P.O. Box 5800, MS-1111,
Albuquerque, NM 87185-1111, USA

b Computational Mathematics and Algorithms Department, Sandia National Laboratories, P.O. Box 5800, MS-1111,
Albuquerque, NM 87185-1111, USA

Abstract

A set of stability analysis algorithms have been developed for analysis of large-scale nonlinear applications on parallel
computers, and applied to 2D and 3D incompressible flow applications. These analysis tools include several continuation
algorithms for locating and tracking bifurcations and a linear stability analysis capability. The continuation algorithms are
developed to be readily linked to application codes that already use Newton’s method.
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1. Introduction

The nonlinear stability of a system must be well under-
stood in order to design, operate, and control an engineer-
ing system with a reasonable level of certainty. While so-
phisticated algorithms exist for studying the stability of nu-
merical models consisting of small sets of ODEs, they have
not been broadly applied to the high-fidelity engineering
models that are being solved today on parallel computers. A
set of tools for performing stability analysis of large-scale
nonlinear systems have been developed at Sandia National
Laboratories, and include the following algorithms:
ž Parameter continuation algorithms, including pseudo

arc-length for locating solution multiplicity.
ž A turning point bifurcation (a.k.a. fold) tracking algo-

rithm.
ž A Pitchfork (symmetry breaking) bifurcation tracking

algorithm.
ž A Hopf bifurcation tracking algorithm.
ž A linear stability analysis tool for approximating leading

eigenvalues.
The bifurcation analysis algorithms are collected in the

LOCA library, that is designed to be readily interfaced with
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codes that already use a full Newton method. While results
for all the algorithms will be shown in the oral presentation,
in the limited space available here we briefly describe just
the pitchfork bifurcation tracking algorithm. The algorithm
is demonstrated on a CFD application modeled by the
MPSalsa code. This code is an unstructured grid finite
element code that simulates incompressible reacting flows
on massively parallel computers [1–4] using a full Newton
method and the Aztec iterative linear solver library [5].

2. Numerical methods overview

The algorithms fall into two distinct categories: a set of
bifurcation analysis tools and an eigensolver.

The bifurcation algorithms are used to detect regions of
multiple steady states and delineate regions of qualitatively
different behaviors. The algorithms currently implemented
include zeroth order, first order, and pseudo arc-length con-
tinuation algorithms [6,7], a turning point bifurcation track-
ing algorithm, pitchfork bifurcation tracking algorithm, and
a Hopf tracking algorithm. An excellent review article on
algorithms for performing numerical bifurcation analysis
has recently been published [8]. Each of the algorithms was
implemented in the LOCA library using bordering algo-
rithms, which require minimal intrusiveness to codes that
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are already set up to do a fully coupled Newton method.
All routines except the Hopf bifurcation tracking algorithm
where written to have just three main calls to the applica-
tion code: (1) calculate a residual vector given a solution
vector and a parameter value; (2) calculate a Jacobian ma-
trix given a solution vector and a parameter value; and (3)
solve a linear system given a Jacobian matrix and right
hand side. Since the linear systems all involve the same
Jacobian matrix as solved by the steady-state code, these
algorithms do not require modification of the matrix fill
routine, sparse matrix allocation, or parallel communica-
tion maps. The Hopf tracking algorithm also requires the
computation of a mass matrix (the coefficient matrix of the
time derivative terms) and a linear solver for a complex-
valued matrix [9].

Due to limited space, only the outline of the pitchfork
bifurcation tracking algorithm will be shown. The algo-
rithm is an extension of a usual Newton iteration for reach-
ing a steady-state solution vector x for a given parameter
p, which is to solve

R.x; p/ D 0 with Newton iteration JŽx D �R (1)

where R is the residual equations from the PDE discretiza-
tion, J is the Jacobian matrix, and Žx is the update to the
latest estimate of the solution vector.

To locate a pitchfork bifurcation, we want to find the
point on the symmetric solution branch where one eigen-
value is zero. We use these conditions to formulate a
Newton method. To start the algorithm, a vector Ψ that is
antisymmetric with respect to the symmetry that is broken
at the pitchfork is required. This vector is generated using
an eigensolver, by calculating the eigenvector associated
with the eigenvalue that is crossing zero at the pitchfork.
The algorithm consists of a system of system of 2Nx C 2
unknowns (x , n, ", and p), where Nx is the length of x
(and the order of J), n is the null vectors at the pitchfork
bifurcation, and " is a slack parameter representing the
asymmetry in the system. (If the numerical system is truly
symmetric, then the algorithm will drive " to zero, but
if there is a slight asymmetry in the problem — perhaps
due to a nonuniform mesh — then " will be nonzero.)
The 2Nx C 2 equations specifying the pitchfork bifurcation
are,

R.x; p/ C "Ψ D 0

J.x; p/n D 0

hx; Ψi D 0

l t n D 1

(2)

The first equation specifies that the solution is a steady
state when the slack parameter is driven to zero, and the
second equation specifies that the system is singular. The
third equation (containing an inner product) forces the
solution vector x to be off of the asymmetric branches, and

the last equation normalizes the length of the null vector.
The form of l t , often chosen to be Ψ, can be chosen by the
user.

This algorithm does not require the user to formulate
the pitchfork problem different from the physical problem.
The symmetry is found by the eigensolver. An alternative
approach requires the user to specify the symmetry being
broken through meshing and boundary conditions. This
involves more user intervention and in some cases can
be difficult to implement, when the boundary conditions
destroy the sparsity pattern of the finite element method.

These equations are solved using a Newton method
using Ψ as an initial guess for n. A bordering algorithm
is used to solve the Newton step that requires six linear
solves of the matrix J, and is equivalent to solving the
size 2Nx C 2 once. The biggest numerical difficulty in
solving for bifurcations using a bordering algorithm is that
we use an iterative solver (which is required for efficient
solves of large systems) to solve the same matrix which we
are driving singular. However, we have found the iterative
solvers work well unless we try to locate the bifurcation to
more than 4 digits of accuracy.

The algorithms and parallel implementation of linear
stability analysis algorithms have been detailed in pub-
lished articles [10–12]. A linearization of the problem
about a steady state leads to a generalized eigenvalue prob-
lem. A Cayley transformation is used to transform the eigen
spectrum in a way that an Arnoldi iteration will converge to
the eigenvalues of interest. We use the ARPACK library to
perform the Arnoldi iteration [13,14]. The main computa-
tional hurdle for a scalable algorithm is the solution of the
linear set of equations to sufficient accuracy with an paral-
lel iterative matrix solver. Details are found in a previous
paper, which contains the approximation of the 6 rightmost
eigenvalues of an order 4 million unknown reactor analysis
problem [11].

3. Application of scalable stability analysis

To briefly illustrate the scalable bifurcation analysis ca-
pabilities, we present results for the symmetry breaking of
two opposed jets. The problem comes from an analysis of
the counterflow jet reactor, an experimental system that has
been used to measure gas phase kinetics in a wall-less envi-
ronment [15,16]. It has been shown that at steady state, the
stagnation point between two opposing jets can be located
away from the midpoint distance between them, even if the
jets have equal mass flow rates and the system is isother-
mal. It is found that for high enough flow rates, described
by the Reynolds number (based on the gap length between
the jets), Re, the symmetric solution becomes unstable to
the asymmetric solutions. Fig. 1 depicts two steady-state
flow profiles, for the symmetric and asymmetric solution
branches.
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Fig. 1. Streamline profiles of the counterflow jet reactor, showing both the symmetric solution (top) and the asymmetric solution (bottom)
that arise due to a pitchfork bifurcation.

Fig. 2. Two-parameter bifurcation set showing the locus of pitch-
fork bifurcations for 2D infinite planar jets (i.e. Cartesian co-
ordinates). The curves delineate regions where stable steady
state solutions exhibit symmetric or asymmetric flow profiles.
The model consisted of 19,000 unknowns and was run on 24
processors.

The initial pitchfork bifurcation is detected using the
linear stability analysis capability. At each step along a
continuation run, where steady state solutions are calcu-
lated at increasing values of Re, the rightmost eigenvalues
were approximated. When a single real eigenvalue crossed
through zero to the positive half plane, signaling a pitch-
fork bifurcation, the pitchfork tracking algorithm (2) was
started. The flow rate (Re) at which the pitchfork occurs is
converged to using Newton’s method. Once one pitchfork
is located, it is easily tracked as a function of a second
parameter, a geometric aspect ratio comparing the diameter
of the inlet jet to the gap between the jets. Fig. 2 show the
curve of pitchfork bifurcations in the two-parameter space

Fig. 3. Two-parameter bifurcation set showing the locus of pitch-
fork bifurcations for opposed circular jets in 2D (using cylin-
drical coordinates). The curves delineate regions of symmetric
and asymmetric flow profiles. The 2D model consisted of 15,000
unknowns and was run on 24 processors.

for a 2D calculation of rectangular jets. Fig. 3 and Fig. 4
show the same results for circular jets, a more accurate
model for the counterflow reactor, which are calculated in
2D using cylindrical coordinates and repeated in 3D using
Cartesian coordinates. By tracking the bifurcation point, an
operability chart is directly generated that shows the maxi-
mum flow rate at which the reactor can be operated to still
avoid the asymmetric solutions.

4. Conclusions

A set of bifurcation analysis algorithms and a linear
stability analysis capability have been successfully imple-
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Fig. 4. Two-parameter bifurcation set showing the locus of pitch-
fork bifurcations for opposed circular jets in 2D (using cylindri-
cal coordinates) and in 3D, for small aspect ratios. The curves
delineate regions of symmetric and asymmetric flow profiles, and
differ only due to the lower resolution of the 3D calculation. The
2D model consisted of 15,000 unknowns and was run on 24
processors, and the 3D model consisted of 350,000 unknowns
and was run on 256 processors.

mented around a massively parallel incompressible flow
code. The algorithms rely only on iterative matrix solvers
and so are scalable to large problems, and are designed to
be easily implemented around application codes. In one ex-
ample problem, the locus of pitchfork bifurcations delineat-
ing symmetric and asymmetric operation of a counterflow
jet reactor were automatically calculated. The pitchfork al-
gorithm has been shown to work on problems as large as
350,000 unknowns distributed across 256 processors of a
distributed memory parallel computer.
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